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The work concerns the nonlinear dynamics of oceanic internal waves in resonance
with a surface shear current. The resonance occurs when the celerity of the wave
matches the mean flow speed at the surface. The evolution of weakly nonlinear
waves long compared to the thickness of the upper mixed layer is found to be
described by two linearly coupled equations (a linearized intermediate long wave
equation and the Riemann wave equation). The presence of a pseudodifferential
operator leads to qualitatively new features of the wave dynamics compared to the
previously studied case of shallow water. The system is investigated primarily by
means of numerical analysis. It possesses a variety of both periodic and solitary wave
stationary solutions, including ‘delocalized solitons’ with a localized core and very
small non-decaying oscillatory tails (throughout the paper we use the term ‘soliton’
as synonymous with ‘solitary wave’ and do not imply any integrability of the system).
These ‘solitons’ are in linear resonance with infinitesimal waves, which in the evolution-
ary problem normally results in radiative damping. However, the rate of the energy
losses proves to be so small, that these delocalized radiating solitons can be treated
as quasi-stationary, that is, effectively, as true solitons at the characteristic time
scales of the system. Moreover, they represent a very important class of intermediate
asymptotics in the evolution of initial localized pulses. A typical pulse evolves into
a sequence of solitary waves of all kinds, including the ‘delocalized’ ones, plus a
decaying train of periodic waves. The remarkable feature of this evolution is that
of all the products of the pulse fission (in a wide range of parameters of the initial
pulse) the radiating solitons have by far the largest amplitudes. We argue that the
radiating solitons acting as intermediate asymptotics of initial-value problems are a
generic phenomenon not confined to the particular model under consideration.

1. Introduction
Manifestations of the internal waves on the ocean surface have long attracted

the attention of both observationally and theoretically minded oceanographers.
Numerous field experiments have been conducted and extensive databases of in situ
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measurements of internal waves in both the bulk of the ocean and in the upper
mixed layer are now available (e.g. IOS/WHOI/ONR 1999). Continuing progress in
remote sensing of the ocean surface, in turn, has provided numerous satellite images
of the typical signatures caused by internal waves (see e.g. Klemas, Zheng & Yan
1998).The interest in the interplay of complicated physical mechanisms leading to such
manifestations has resulted in vast literature; however, the basics are quite simple
and straightforward. A propagating internal wave creates an inhomogeneous surface
velocity field, i.e areas of the few convergency and divergence at the surface, which
results in considerable changes in observable properties of the ocean surface, such as
albedo, breaking patterns of short gravity waves (and therefore, the cross-section of
microwave scattering), floating seaweed and ice distribution.

Hence, patterns of intermittent stripes of floating material or areas with higher
and lower albedo (slicks) are routinely observed when internal waves are present.
Surprisingly, slicks at the water surface have been reported even when no
internal waves were detected by the standard techniques at the thermocline depth
(A. N. Serebryany 2002, personal communication). A possible interpretation of such
observations is that under certain conditions, even quite weak internal waves can
produce significant surface signatures. A model based upon this line of thought
aimed at explaining this phenomenon was proposed by Voronovich & Shrira (1996),
who assumed the internal wave-shear flow resonance to be the underlying mechanism.
The resonance occurs when there is a surface current strong enough for its velocity at
the surface to coincide with the celerity of an internal wave propagating in the bulk
of the ocean. It results in an order of magnitude amplification of the wave-induced
horizontal velocity field at the surface and, thus, makes the surface signatures of even
comparatively weak internal waves pronounced and easily detectable.

A nonlinear model of the resonance in shallow water was developed later by
Voronovich, Pelinovsky & Shrira (1998a), who employed the concept of a vorticity
wave to describe the flow perturbations (see Shrira 1989), and derived a system of
coupled evolution equations for the wave amplitudes. The system possesses both
periodic and solitary wave solutions belonging to the two different families, which
move respectively slightly faster and slower than the linear waves. The amplitude of
the ‘fast’ waves is limited from above by a peaked soliton, i.e. a solitary wave with
a sharp corner at the crest. Numerical simulations showed that the solitary waves
represent ‘attractors’ for the ‘subcritical’ localized pulses, i.e. with initial amplitudes
below a certain threshold, which evolve into a sequence of solitary waves plus an
oscillatory tail. ‘Supercritical’ pulses develop vertical slopes at the front in finite time,
which indicates wave breaking. The properties of the system and of the solitary waves,
in particular, were found to depend heavily on the value of the mismatch in the phase
speeds of the interacting waves, the only external parameter in the system. When an
internal wave travels over a variable depth, e.g. through the shelf region, its celerity
evolves and so does the mismatch. Shrira, Voronovich & Sazonov (2000) studied
the dynamics of the resonant waves over a sloping bottom and showed that both
periodic and solitary waves propagating onshore grow in amplitude, eventually reach
the limiting configuration, and then break. The breaking occurs mainly in the upper
layer whereas the motion at depth remains smooth. Breaking events may represent an
important mechanism of a poorly accounted for contribution of the internal waves to
the mixing processes in the upper layer, which have a profound impact on the energy,
momentum, mass and heat exchange between the ocean and the atmosphere.

The aforementioned studies were concerned with the shallow-water approximation,
restricting the applicability of the model to the regions of continental shelves and
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shallow seas and lakes. Nevertheless, the resonance can occur in the deep and
intermediate ocean as well, provided certain conditions are met. The study of the
resonant interaction between internal waves and a surface current in deep and finite-
depth water represents the primary subject of this paper. In § 2 by means of an
asymptotic analysis we derive a set of coupled evolution equations governing the
resonance between the current and internal waves long compared to the thickness of
the upper mixed layer:

at + 2aax − bx = 0, (1.1a)

bt + δbx − L̃[bx] − ax = 0. (1.1b)

The dispersion in (1.1) is described by an integral operator L̃, with the kernel
dependent on the depth. The study of nonlinear waves governed by non-local
equations represents a special challenge: there is no regular technique and very
little intuition based on accumulated previous experience. Equations (1.1) possesses
a number of integrals of motion corresponding to the ‘mass’, ‘momentum’ and the
‘energy’ of the wave field, which are discussed in § 3. There exist two types of
infinitesimal harmonic solutions, with the spectrum of velocities limited from above
and separated by a gap (forbidden zone).

Stationary solitary waves are studied numerically in § 4. They exist in the gaps of
the linear spectrum, with their speed limited from above. The limiting wave has a
sharp corner at the crest, which corresponds to the nonlinear critical layer formed
as the speed of the particles swept by the wave attains the wave phase speed. Apart
from the common ‘gap’ solitons, so-called ‘delocalized’ ones characterized by two
symmetric infinite oscillatory tails were found in the range of propagation speeds
belonging to the linear wave spectrum. In the evolutionary setting these objects, on
the one hand, are obviously non-stationary, as the resonance with infinitesimal waves
leads to radiative damping; on the other hand, the rate of energy loss proves to
be extremely small, which allows one to treat them as if they were true stationary
waves. Numerical results are partially corroborated by an asymptotic analysis of the
radiation. In § 5 the evolution of the localized pulses within the framework of (1.1) is
studied numerically. ‘Subcritical’ pulses, i.e. those for which the values of the integrals
of motion do not exceed a certain threshold, evolve into a sequence of solitary waves,
with the ‘delocalized’ ones having by far the largest amplitudes in the sequence.
‘Supercritical’ pulses develop a vertical slope at the front and, eventually, break. The
results, their implications and the wider context are briefly discussed in the conclu-
sive § 6.

2. The model, scaling and asymptotic analysis
2.1. The model and basic assumptions

We study the dynamics of long waves in an inviscid and incompressible fluid in the
presence of a surface shear current. The x-axis of the coordinate frame is in the
direction of the current and z is vertically upward. For the sake of simplicity we
consider the simplest model, based on the following assumptions:
(i) The fluid consists of two homogeneous layers separated at z = −H by a density
jump �ρ = ρ2 − ρ1 > 0 which is assumed to be small:

�ρ/ρ1,2 � 1. (2.1a)
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Figure 1. Geometry and notation.

(ii) The density interface depth H is small compared to the total depth D:

H/D � 1. (2.1b)

(iii) The current is assumed to be planar U = {U (z), 0, 0} and to occupy only a small
fraction of the upper layer −h < z < 0:

h/H � 1. (2.1c)

(iv) Velocity U and its gradient decrease monotonically with z and are negligibly
small below −h (see figure 1).
(v) For the sake of simplicity, the spanwise motions and variations are neglected.
(vi) The study is restricted to long wave perturbations with the characteristic
horizontal scale (wavelength) λ such that

H/λ � 1. (2.1d)

2.2. Governing equations and boundary conditions

In the presence of parallel mean flow U(z) the motion of inviscid incompressible fluid
can be described by the following set of equations:

(∂t + U∂x)∇2w − Uzzwx = (uux + wuz)xz − (uwx + wwz)xx, (2.2a)

ux + wz = 0, (2.2b)

where u(t, x, z), w(t, x, z) are the horizontal and vertical velocity perturbations about
the mean flow. Subscripts denote the corresponding derivatives.

Solutions of (2.2) must satisfy the ‘rigid lid’ condition (see e.g. Leblond & Mysak
1979) at the surface and the non-permeability condition at the bottom, presumed to
be flat:

w = 0 at z = 0 and z = −D. (2.3)

The fluid consists of three layers: the uppermost, of light fluid, occupied by the
current; the middle, of the same light fluid, but without a current; and the lower, of
heavier fluid without currents. Solutions of (2.2) in each of them must be matched
at the interfaces: the interface displacement and pressure have to be continuous. At
the upper interface there is a jump in neither density nor vorticity, hence the velocity
field is continuous. This implies

[w] = 0, [wz] = 0 at z = −h, (2.4)
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where [f ] denotes a jump in a variable f at the interface. At the lower interface
(density jump) (see Appendix A)

[uζx − w] = 0, (2.5a)

[ut + uux + wuz] + [wt + uwx + wwz]ζx − g′ζx = 0 at z = −H + ζ, (2.5b)

where g′ = g�ρ/ρ1; ζ (t, x) is the interface deflection due to the wave perturbation. It
can be found from the kinematic condition

ζt + uζx = w at z = −H + ζ. (2.6)

The system (2.2)–(2.6) constitutes the framework of the analysis to follow.

2.3. Scaling

The scales of vertical motion in the three layers, h, H and λ, are different and widely
separated. A qualitative preliminary analysis suggests that the ‘distinguished limit’ is
realized (e.g. Nayfeh 1993), that is the largest number of various physical phenomena
are taken into account correctly, when these scales satisfy the relation

h

H
=

(
H

λ

)2

= ε2 � 1, (2.7)

which is assumed to hold hereinafter. Equation (2.7) defines the key small parameter
ε in our analysis.

Let us introduce the non-dimensional variables (denoted by asterisk)

x∗ =
x

λ
, z∗ =

z

〈z〉 , t∗ =
U0

λ
t,

u = 〈u〉 U0u∗, w = 〈w〉 U0w∗, ζ∗ =
ζ

〈ζ 〉 ,

the scales 〈. . .〉 being different in each layer, U0 =U (0). Note that only 〈u〉, 〈z〉 are
independent, as the other scales are related to them through (2.2b) and (2.6):

〈w〉 =
〈z〉
λ

〈u〉, 〈ζ 〉 = 〈u〉〈z〉. (2.8)

It is convenient to choose a reference frame moving with the celerity of the linear
wave c = U0 c∗, i.e. introduce a running coordinate

χ∗ = x∗ − c∗t∗. (2.9a)

The evolution in such a reference frame occurs on much slower time scale, i.e. for any
physical field

f (t∗, x∗, z∗) = f (ετ, χ∗, z∗). (2.9b)

The non-dimensional version of (2.2) is then (asterisks are dropped)

(ε∂τ + σ∂χ )

(
wzz +

〈z〉2

λ2
wχχ

)
− σzzwχ = 〈u〉

[
(uuχ +wuz)z − 〈z〉2

λ2
(uwχ + wwz)χ

]
χ

,

(2.10a)

uχ + wz = 0, (2.10b)

where σ = U (z) − c.



278 V. V. Voronovich, I. A. Sazonov and V. I. Shrira

2.4. Asymptotic analysis and evolution equations

In each of the layers a solution is sought in the form of an asymptotic series in powers
of ε:

{u, w} =

∞∑
n=0

εn{un, wn}. (2.11)

In the uppermost layer (all variables are marked by a hat)

〈û〉 = ε, 〈ẑ〉 = h, (2.12)

and (2.10a) becomes

(σŵẑẑ − σẑẑŵ)χ = εŵẑẑτ + ε(uuχ + wuz)ẑχ + o(ε). (2.13)

On substituting (2.11) into (2.13) we obtain

ŵ = −σAχ − ε

(
Aτ + σẑAAχ + σBχ

∫ ẑ c2

σ 2
dz′

)
+ · · · , (2.14a)

û = σẑA + ε

(
σẑẑ

2
A2 +

c2

σ
B + σẑB

∫ ẑ c2

σ 2
dz′

)
+ · · · , (2.14b)

where A(τ, χ) and B(τ, χ) are as yet unknown functions specifying amplitudes of the
vorticity wave and internal wave, respectively. At the main order the motion of fluid
particles in the uppermost layer represents a ‘pure’ vorticity wave (see Voronovich,
Shrira & Stepanyantz 1998b), unaffected by the resonant interaction. The effect of
the internal wave comes only at the second order of (2.14).

Applying the boundary condition at the surface specifies the value of the phase
speed of the vorticity wave:

c = U0 (2.15a)

and yields the evolution equation for the wave amplitude:

Aτ + U ′
0 AAχ − U 2

0

U ′
0

Bχ = 0, (2.15b)

where U ′
0 =Uẑ(0). It should be mentioned that the streamwise velocity component u1

is divergent,

û1 	 −Bχ

U ′′
0

U ′ 2
0

log |ẑ| + · · · , ẑ → 0. (2.16)

This divergence indicates the presence of a critical layer at ẑ = 0 and, normally,
requires special attention. However, the analysis carried out by Voronovich et al.
(1998b) shows that the critical layer contribution to (2.15b) is, to the leading order,
negligible for two-dimensional motions, which for the time scales we are interested in
enables us to ignore it.

In the middle layer (the variables are marked by an overbar)

〈ū〉 = ε2, 〈z̄〉 = H, (2.17)

the current is absent, (2.10a) is

(−cw̄χ + εw̄τ )z̄z̄ = o(ε) (2.18)

and the vertical velocity dependence on depth is linear. Applying matching conditions
(2.4) at ẑ → −∞, z̄ → 0, we obtain

w̄ = cBχ z̄ + ε(cAχ + Rχz̄) + · · · , (2.19a)

ū = −cB − εR + · · · , (2.19b)
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where R(τ, χ) is a correction to the amplitude of the internal wave; it plays no role
in the adopted approximation.

In the bottom layer (the variables are marked by a breve)

〈ǔ〉 = ε3, 〈ž〉 = λ. (2.20)

The density being constant, the fluid still and the horizontal and vertical scales equal,
the motion is potential and (2.2a) takes the form

w̌žž + w̌χχ = o(ε2). (2.21)

Its solution is sought as a combination of the primary Fourier harmonics with
amplitudes depending on time and depth in terms of a wavetrain amplitude Φ(τ, χ)

w̌ = F−1

[
F[Φχ ]

φ(k, ž)

φ(k, 0)

]
+ o(1), (2.22)

where F, F−1 stand respectively for the direct and inverse Fourier transforms in χ .
The mode function φ(k, ž) is determined from the boundary problem

φžž − k2φ = 0, (2.23a)

φ(k, ž) → 0, ž → −D∗, (2.23b)

where D∗ = D/λ is the total non-dimensional depth.
The wavetrain amplitude Φ(τ, χ) is easily found from the matching condition (2.5a)

at the density jump. From (2.8), the scale of the interface displacement is

〈ζ 〉 = ε2H = ε3λ.

It is so small that the difference between the vertical velocity and that normal to
the interface is negligible. Moreover, the values of the wave field components at the
moving interface are very well approximated by those at its unperturbed position.
Hence, (2.5a) transforms into

w|ẑ=−1 = w̌|ž=0 + o(ε), (2.24)

which results in

w̌ = −cF−1

[
F[Bχ ]

φ(k, ž)

φ(k, 0)

]
+ o(1), (2.25a)

ǔ = cF−1

[
F[B]

φž

φ

∣∣∣∣
ž=0

]
+ o(1). (2.25b)

2.5. Matching at the density jump

The last condition to be satisfied is (2.5b). Again, due to the very small amplitude of
the interface displacement it can be approximated by

{−cuχ + ε(ut + uuχ + wuz̄)}z̄=−1 −
(

cin

U0

)2

ζχ = −εcǔχ |ž=0 + o(ε). (2.26)

Here

cin =
√

g′H

is the celerity of the long internal wave travelling at the density interface. In resonance
conditions cin must be close, but not necessarily equal, to the current’s speed at the
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surface, i.e. √
g′H

U0

= 1 + ε ω, (2.27)

where ω is the difference in the phase speeds of the interacting waves. The interface
displacement can be found from the kinematic boundary condition (2.6):

ζ = B + ε

(
−A +

1

c
∂−1

χ Bτ +
1

c
R

)
+ · · · . (2.28)

Finally, substituting (2.19), (2.27) and (2.28) into (2.26) we obtain an evolution
equation for the internal wave amplitude B(τ, χ):

Bτ + ωBχ − c

2
L̃[Bχ ] − c

2
Aχ = 0, (2.29a)

where

L̃[f ] = F−1[F[f ] (φ′/φ)|ž=0]. (2.29b)

Equations (2.15b), (2.29) constitute a closed system describing the dynamics of the
wave amplitudes at the resonance conditions in deep and finite-depth water. On
re-scaling the dependent and independent variables

a = 2γ 2 A, b = 2γ 3B, δ = γ ω, x =
χ

γ
, t =

c

2γ 2
τ , (2.30a)

where γ is the coefficient given by

γ =

(
Uẑ

2U

)1/2

ẑ=0

, (2.30b)

the system (2.15b), (2.29) reduces to the form

at + (a2)x − bx = 0, bt + δ bx − L̃[bx] − ax = 0 (2.31)

where the only parameter left is δ, the mismatch in the phase velocities of the
interacting waves.

Although it is more convenient to deal with the system cast into the simplest form
(2.31), it is worth keeping in mind the physical meaning of the dependent variables a

and b: b is normalized amplitude of the internal gravity wave mode, more specifically,
it can be viewed as the deflection of the density interface; a is normalized amplitude
of the vorticity mode in the uppermost layer and can be viewed as the normalized
perturbation of the surface velocity.

3. Dispersive properties and conservation laws
To elucidate the expressions for L̃ consider first a deep fluid, i.e. of depth large

compared to a typical wavelength. The solution of (2.23) vanishing at minus infinity
is

φ(k, ž) = exp{|k| ž}
and, hence,

L̃[f ] = F−1[F[f ]|k|] = −H̃ [fχ ], (3.1)

where H̃ is the Hilbert transform. In fluid of finite depth, i.e. comparable to the
wavelength, the solution of (2.23) is

φk(ž) = sinh{k(ž + D∗)},
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and

L̃[f ] = F−1[F[f ]k coth(kD∗)] = −J̃[fχ ], (3.2)

where J̃ is the Joseph operator (Joseph 1977). Note that (3.2) reduces to (3.1) in the
deep water limit, i.e. when D∗ → ∞.

3.1. Conservation laws

The system (2.31) possesses several integrals of motion. The quantities

M[a] =

∫ ∞

−∞
a dx, M[b] =

∫ ∞

−∞
b dx. (3.3a)

P[a, b] =
1

2

∫ ∞

−∞
(a2 + b2) dx, (3.3b)

E[a, b] =
1

2

∫ ∞

−∞

(
δ b2 + b G̃[bx] + 2

3
a3 − 2ab

)
dx, (3.3c)

are time-independent, provided the functions a(x, t), b(x, t) corresponding to the wave
amplitudes are localized, or periodic. In the latter case the integrals in (3.3) must be
interpreted as those over the period.

Here G̃ may represent both Hilbert and Joseph operators, or, in general, any
operator connected with (2.29b) by the rule

L̃[f ] = −G̃[fx].

It is worth noting that (2.31) can be obtained from the constrained variational
problem δΛ = 0, where Λ is the Lyapunov functional given by Λ = E + vP and v

serves as a Lagrange multiplier. In other words, the stationary solitary wave solutions
can be regarded as extremal points of the functional E at a fixed value of P. These
two conserved quantities are then the ‘energy’ and the ‘momentum’ of the nonlinear
wave field.

3.2. Infinitesimal harmonic waves

It is illuminating to consider first solutions to (2.31) in the small-amplitude limit. Let
us look for solutions in the form of a harmonic wave(

a

b

)
=

(
ã

b̃

)
exp{ik(x − vt)}, |ã|, |b̃| � 1 (3.4)

where k and v are the wavenumber and celerity of the linear wave. Substituting (3.4)
into (2.31) and neglecting the nonlinear term we end up with a system of algebraic
equations

vã + b̃ = 0, ã + (v − δ + Q(k))b̃ = 0 (3.5a, b)

where

Q(k) =
φ′

φ

∣∣∣∣
ž=0

is the Fourier transform of the kernel of the operator L̃. Non-trivial solutions of
(3.5) exist only if

v = 1
2

{
δ − Q(k) ± ([δ − Q(k)]2 + 4)1/2

}
. (3.6)

Equation (3.6) is the dispersion relation of infinitesimal harmonic waves, a typical
example being shown in figure 2. Linear waves belong to two different branches:

−∞ < v � c− < 0, 0 � v � c+, (3.7)
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Figure 2. An example of the dispersion curve for linear waves (deep water, δ = 1).

which correspond to the vorticity and density interface gravity modes modified by
their interaction in the vicinity of the resonance.

The limiting values of the phase velocity c± are specified by the kernel of the
dispersion operator: in the deep water limit

Q(k) = |k|, c± = 1
2

{δ ±
√

δ2 + 4}; (3.8a)

in water of finite depth

Q(k) = k coth(kD∗), c± =
1

2

{
δ − 1

D∗
±

√(
δ − 1

D∗

)2

+ 4

}
. (3.8b)

Below we will use short-wave asymptotics (|Q(k)| � 1) for the upper branch of the
dispersion relation (3.6), which implies

v 	 1

|Q(k)|

(
for deep water v 	 1

|k|

)
. (3.9)

4. Solitary waves
For any value of δ there exist two gaps in the spectrum of the linear wave speeds.

Therefore, one may expect nonlinear solitary waves (gap solitons) to travel with the
velocities lying inside the forbidden zones (see e.g. de Sterke & Sipe 1994). With this
in mind, we look for stationary solutions preserving their form and advancing with a
constant speed:

a = as(ξ ), b = bs(ξ ), where ξ = x − vt, (4.1)

with the analysis centred on solitary waves, such that as, bs → 0 as x → ±∞ (it would
also be of interest to investigate kink solitons but this goes beyond the scope of the
present paper). On substituting (4.1) into (2.31) and integrating it once with respect
to ξ we obtain

a2
s − vas − bs = 0, (v − δ + L̃)bs + as = 0 (4.2a, b)
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Equations (4.2) do not allow one to use the phase-plane analysis successfully
employed by Voronovich et al. (1998a) to treat a similar problem in shallow water.
The non-local pseudo-differential dispersion operators L̃ encountered both in deep
and finite-depth water result in the phase space of the system having an infinite number
of dimensions. So far, no non-trivial analytical solutions have been found. Instead
we have to resort to numerics, the details of which can be found in Appendix B. The
numerics yields solitary waves with v lying in the gaps of the linear spectrum

v ∈ (c−; min{δ, 0}), gap solitons,

v ∈ (c+; v+), ‘fast’ solitons.

The upper limit on the speed of propagation of the gap solitons being equal to δ rather
than 0, if δ is negative, has a simple explanation. The phase mismatch was introduced
through (2.27) by assuming that the evolution of the wave amplitude occurs on the
slow O(ε) time scale. As the phase speed of the travelling wave v becomes close to
δ the evolution on the slow time scale ceases to occur at the assumed order and the
next order of slowness must be taken into account. In other words, the difference
|v − δ| must be O(1) to ensure validity of the asymptotic scheme employed.

4.1. ‘Fast’ waves

The region of existence of the ‘fast’ solitary waves is limited from above by the value
v+ corresponding to a ‘peaked soliton’ with a singularity at the crest. To investigate
its type we assume, as suggested by numerics, that the internal wave field b(ξ ) remains
smooth. Differentiating the first equation (4.2) with respect to ξ results in

2
(
as − v

2

)
a′

s = b′
s . (4.3)

At v = v+ the multiplier in the parentheses equals zero at the crest, hence the height
of the limiting wave is given by

b+ = −v2
+

4
, ⇒ a+ =

v+

2
; (4.4)

b+ corresponds to the trough of the internal wave as b′
s = 0. Expanding (4.3) in Taylor

series with respect to ξ , assuming that the reference point of the coordinate system is
the crest/trough of the wave and taking into account (4.4), leads to

a′
± = −

√
b′′

s

2
sgn(ξ ) as ξ → ±0, (4.5)

where a′
± is understood as the left-/right one-sided derivative. The limiting wave has

a jump of the first derivative at the crest of the vorticity wave component, i.e. its
profile exhibits a sharp corner. The internal wave component b(ξ ) remains smooth
similar to the shallow-water case. Our asymptotic model ceases to be applicable near
the singularity, nevertheless, the emergence of such a singularity in the asymptotic
model suggests the formation of a nonlinear critical layer near the surface, as the hori-
zontal speed of the fluid particles swept by the wave approaches its phase speed v.

Examples of the ‘fast’ solitary wave profiles, moving with different speeds in deep
water, are shown in figure 3. The dependence of the solitary wave velocity v and its
characteristic width λ on the amplitude of the a-component are plotted in figure 4
for several values of δ. Wave speed increases monotonically with the increase of
max(as). The width λ, understood as the spatial span of the a-component at the level
max(as)/2, decreases monotonically with the growth of its amplitude or speed. The
spatial structure of the soliton is further discussed below in § 4.5.
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Figure 3. Profiles of the ‘fast’ solitary waves in deep water, δ = 1. The values of
corresponding soliton speeds v are shown in the box.
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Figure 4. ‘Fast’ wave speed v and width λ vs. max(as) in deep water for different values of
the phase mismatch δ (see the box).

4.2. Gap solitons

Examples of computed profiles of ‘gap solitons’ in deep water for δ = 1 are shown in
figure 5. They are more localized than the ‘fast’ ones, the core of the wave being better
distinguished from the peripheral regions. The dependence of speed v and width λ on
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Figure 6. ‘Slow’ wave speed v and width λ vs. max(as) in deep water for different values of
the phase mismatch δ (see the box).

the height of the a-component are plotted in figure 6 for several values of δ. Note that
the dependence of the width λ on the wave height is not monotonic. This peculiar
behaviour is observed for the ‘gap solitons’ in water of finite depth as well, although
it becomes less pronounced as the depth decreases and disappears completely in the
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shallow-water limit. The spatial structure of the solution is further discussed below
in § 4.5.

4.3. Decay at the periphery

At the periphery of the solitary wave the amplitude decreases, (4.2) decouple
and become close to the Benjamin–Ono(BO)/Joseph models, with typical ∼ ξ−2

or ∼ exp(−|ξ |) decay as |ξ | → ∞ (Benjamin 1967; Joseph 1977). From (4.2)

as =
v

2

(
1 ±

(
1 +

4bs

v2

)1/2 )
, (4.6a)

(v − δ + L̃)bs +
v

2

(
1 −

(
1 +

4bs

v2

)1/2 )
= 0. (4.6b)

The root with the negative sign must be taken in (4.6), otherwise the amplitudes
as and bs cannot vanish simultaneously, and the solution thus obtained does not
describe a solitary wave.

At the periphery of the solitary wave the square roots in (4.6a), (4.6b) can be
expanded in powers of |b/v2| � 1 with just two terms providing sufficient accuracy:

as = −bs

v
+

b2
s

v3
, (4.7a)(

v − δ − 1

v
+ L̃

)
bs +

b2
s

v3
= 0. (4.7b)

After a scaling transformation (4.7b) becomes a stationary BO/Joseph equation
specifying the amplitude of the solitary wave moving with the speed

κ =
1

v
(v − c−)(v − c+), (4.7c)

where c−, c+ are the boundaries of the linear wave spectrum. Therefore, one could
expect that the behaviour of the solitary wave solutions of (2.31) will be similar
to that in the classical models, i.e. the waves will decay as |ξ | → ∞ in a power-like
manner in deep water and exponentially in the case of finite depth.

4.4. ‘Delocalized solitons’

Numerics also revealed the existence of soliton-like solutions to (4.2) for δ > 0, within
part of the interval v ∈ (0, δ). At first sight this result looks surprising, as there always
exist linear harmonic waves propagating with the same speed. A solitary wave, thus,
should be in resonance with a harmonic wave, which normally leads to the emission
of the latter and the radiative damping of the former. Due to this mechanism, no
steady solitary wave normally travels with speed equal to that of any harmonic wave.
The profiles of the waves seem to be similar to those of the ‘gap solitons’, i.e. a- and
b-components of the field have the same polarities in the core, the amplitude growing
very fast with the speed increase. Yet, there are two striking differences, which become
obvious when the area close to the ξ -axis is magnified. First, as the a-component of
the wave field remains positive, the b-component changes its sign at a certain distance
from the crest (see figure 7).

Second, at the periphery of the wave small oscillations are clearly visible (see
figure 8). The amplitude of the tail oscillations is extremely small even in water of
intermediate depth and they almost vanish as the depth of the fluid increases and the
integral operator (2.29b) becomes close to (3.1). The oscillations still exist, but are
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Figure 7. ‘Delocalized’ solitary wave profiles in deep water, magnified. δ = 1, values of v
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not visible unless very special techniques are employed. The solitary waves resonant
with the linear spectrum are, in fact, the so-called ‘delocalized’ solitons, similar to
those studied by Grimshaw & Joshi (1995), Boyd (1991), Akylas & Yang (1995) and
many others within the framework of higher-order (e.g. fifth-order KdV) evolution
equations. A completely different approach was used by Iooss & Kirrman (1996), Iooss
(1999), Iooss, Lombardi & Sun (2002) and others to study capillary–gravity waves
of permanent form and steady waves at the interface of two fluids with different
densities. By representing the Euler equations as a dynamical system and using the
normal-form formalism (see e.g. Kirchgässner 1988), the authors proved rigorously
the existence of steady solitary waves in these systems, including some examples with
algebraic core and oscillatory tails (see Dias & Iooss 2003 for a review). All these
studies were confined to potential fluid flows and strictly steady solitary-like patterns.
The interest in such patterns was purely mathematical: it is, indeed, a mathematical
challenge to find exponentially small tails typical of such patterns. However, nobody
expects such symmetric double-tailed structures to survive in an evolutionary setting.
We will come back to this point in the next subsection.

The origin of the ‘delocalized solitons’ and their affinity with the gap ones is most
clearly revealed by figure 9: samples of nonlinear dispersion curves of the ‘delocalized
soliton’ for several values of the mismatch δ shown as solid lines are the direct
continuation of dispersion curves of the gap solitons of § 4.2 shown as dashed lines.
The existence of ‘delocalized solitons’ proves to be strongly dependent on the kernel
of the dispersion operator L̃ in (4.2), and ultimately, on the water depth. Indeed, in
the shallow-water limit (L̃ = L̃shallow = ∂xx) they do not exist at all (see Voronovich
et al. 1998a). In deep water, they seem to occupy the whole interval (0, δ) of the
possible phase speeds, and the oscillatory tails are exponentially small. In water of
finite depth L̃ has the kernel given by (3.8b), which implies that L̃ → L̃shallow ≡ ∂xx

in the limit D∗ → 0. At the same time, in the limit D∗ → ∞ the kernel is asymptotically
close to |k| and, hence, L̃ tends to the Hilbert transform. The intermediate nature
of the Joseph operator manifests itself in the range of existence of the ‘delocalized
solitons’: the span of their speeds contracts from (0, δ) to zero, as the water depth D

decreases from infinity to zero.
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Figure 10. Spatial structure of the solutions. Streamlines of the perturbation field (a, b, c)
and the total velocity field (d) (D =1, δ = 2, ε = 0.1): (a) ‘fast’ solitons (v =1.74); (b) ‘slow’
solitons (v = −0.6). (c) ‘delocalized’ solitons (v = 0.19). (d) Sketch of the total velocity field
(current plus perturbation) for the ‘delocalized’ solitons (v = 0.19) in the laboratory frame of
reference. Bold dashed lines indicate the horizontal velocity profile of the perturbation (a, b, c)
and the total field (d) in the soliton maximum.

4.5. Spatial structure of the solutions

In the previous subsections we investigated the classes of possible solutions within the
framework of our asymptotic model and what these solutions look like in terms of
non-dimensional amplitudes a and b. The issue of the spatial structure of the solutions
found in the original physical variables and what this implies from the viewpoint of
observations in different parts of the water column merits special consideration. Here,
in addressing the issue, we confine ourselves to outlining just a few key points in a
very brief discussion.

First, to interpret figures 3–9 already discussed, it is appropriate to recall that b is
normalized amplitude of the internal gravity wave mode or deflection of the density
interface taken with the negative sign, while a is normalized amplitude of the vorticity
mode or normalized perturbation of the surface velocity.

The best way to give an idea of the spatial structure of different solutions would
be to plot representative velocity fields. However, to represent graphically the velocity
field distributions is a formidable challenge because, first, the spatial scales h, H, D

and λ could be widely separated, and second, the perturbation velocity scaling varies
very significantly: from O(ε) in the uppermost layer to O(ε3) in the bottom layer.
In figure 10 we attempt to overcome the difficulty by plotting the streamlines of
representative samples of the three basic types of soliton solutions and employing
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special non-uniform scaling. For the example we assume the surface current profile to
be prescribed by the error function. For all solutions under consideration we choose
the same set of parameters: D = 1, δ =2, ε = 0.1. Since drawing the streamlines at the
true scale is not illuminating because of the mentioned wide separation of scales, we
compress the picture in the horizontal direction and employ the following non-uniform
scaling along the vertical: we map z ∈ [0, −∞] onto uniformly varying η ∈ [0, −∞] by
the formula

η = −log(1 − z/h).

The scale is almost uniform in the uppermost layer and approximately logarithmic
in the middle and bottom ones. To circumvent the problem caused by the presence
of vastly different velocity magnitudes we adapt the step between the streamlines to
show motions in the nearly stagnant part of the flow as well. Thus, the streamline
density and direction do not allow one to quantify the true velocity; nevertheless these
pictures overall give a good qualitative idea of the spatial structure of the motions.
Most vividly this ‘topological’ structure could be seen in the perturbation-only field
(i.e. with the mean flow comprising the surface current and the flow resulting from
the motion of the coordinate frame, subtracted) in the frame of reference moving
with the wave, as shown in figure 10(a–c). It easy to infer that the fast solitons have
less pronounced surface manifestations compared to the slow and delocalized ones of
comparable amplitude at the pycnocline. The perturbations of the surface velocity due
to the fast solitons are in phase with the velocity at the density interface, in contrast
to the slow and delocalized ones. To give a better idea of the horizontal velocity
its vertical distribution in the soliton maximum is plotted by a bold dashed line.
The horizontal scale is arbitrary, the reference is provided by the vertical dot-dashed
line which indicates the zero of this velocity component. The horizontal velocity, as
expected, has a break at the density jump. Figure 10(b, c) shows both the affinity
of the slow and delocalized solitons and the subtle features by which they could be
distinguished either in numerical simulations or experiments.

However, it is worth noting that in reality, i.e. in any experiment (including
numerics), the raw picture of fluid motion will look dramatically different for a
number of reasons. First, all closed streamlines disappear in the laboratory frame.
The larger the wave celerity, the less pronounced the observed motion will look in
the records and vice versa. Second, bringing back into the picture the much stronger
mean current obviously makes the perturbation field less visible. Third, for the full
velocity field the separation of scales in the velocity magnitudes increases even further.
The full effect of the first two factors is shown in figure 10(d), where the delocalized
soliton of figure 10(c) is presented in the laboratory frame of reference in the presence
of the mean current. Although the effect of the third factor was mitigated by the
non-uniform scaling adopted, the soliton becomes quite inconspicuous: there are only
slightly disturbed horizontal lines. Note that in figure 10(d) the perturbation has been
exaggerated; therefore, this figure should be viewed more as a sketch than a true
plot of the solution. All this suggests that the solitary waves resulting from the direct
resonance interaction are very difficult to discern in any sort of data without a special
effort.

4.6. Oscillatory tails

Asymptotics of the wave field at large ξ can be found by a method similar to that used
by Akylas & Yang (1995) to find asymptotic solutions of the forced KdV equation.
The speed of ‘delocalized’ solitons lies within the linear spectrum; therefore, κ in
(4.7c) is negative. Fourier transform of (4.7b) (for lucidity we confine our attention to



On radiating solitons due to the internal wave–shear flow resonance 291

the deep-water limit) results in

b̃k = − 1

|k| − |κ |

(̃
b2

s

)
k

v3
= − 1

v3

1

|k| − |κ |

∫ ∞

−∞
b̃q b̃k−q dq, (4.8)

where b̃k is the kth Fourier component of bs(ξ ). The inverse Fourier transform of
(4.8) yields an integral equation

bs(ξ ) = − 1

2πv3

∫ ∞

−∞

eikξ

|k| − |κ |
(̃
b2

s

)
k
dk (4.9)

from which, assuming that (̃b2
s )k is specified primarily by the soliton’s core, asymptotic

expressions for the solitary wave tails can be easily deduced. The singularity in the
spectrum of the solution corresponds to the tail oscillations.

To find the tail asymptotics, we first split the integral into two: over positive and
negative k. The second one can be further transformed:

− 1

2πv3

∫ 0

−∞

eikξ

−k − |κ |
(̃
b2

s

)
k
dk = − 1

2πv3

∫ ∞

0

e−ikξ

k − |κ |
(̃
b2

s

)∗

k
dk. (4.10)

The equality
(
b2

s

)∗
k
=

(
b2

s

)
−k

, valid since b2(ξ ) is real, was used. Hence,

bs(ξ ) = − 1

2πv3

∫ ∞

0

eikξ

k − |κ |
(̃
b2

s

)
k
dk + c.c, (4.11)

where c.c. stands for complex conjugate. On rearranging the terms in the integrand,
(4.11) can be presented in the form

bs(ξ ) = − 1

2πv3

((̃
b2

s

)
|κ |J1 −

(̃
b2

s

)
|κ |J2 + J3

)
+ c.c., (4.12a)

where J1..3 designate the integrals

J1 =

∫ ∞

−∞

eikξ

k − |κ | dk, J2 =

∫ 0

−∞

eikξ

k − |κ | dk, J3 =

∫ ∞

0

eikξ

k − |κ |
((̃

b2
s

)
k

−
(̃
b2

s

)
|κ |

)
dk.

(4.12b)
Note that now only the first integral, J1, in (4.12b) contains the singularity, whereas
the other two are regular and can be approximated at large values of ξ by the Laplace
method. After performing the necessary calculations the result is

−
(̃
b2

s

)
|κ |J2 + J3 + c.c. = 2

(̃
b2

s

)
0

|κ |2ξ 2
+ o

(
1

ξ 2

)
. (4.13)

Equation (4.13) describes the power-like tail decay typical of the Benjamin–Ono
solitons.

The integral J1 can be evaluated by employing Jordan’s lemma on the complex
k-plane. The path of integration must be chosen in accordance with the casuality
principle, as is common in studies of the radiative damping of moving perturbations
in fluids or electromagnetic waves in plasmas (Landau 1946). Let us first consider a
free solitary wave moving in a medium otherwise at rest and being in resonance with
a linear wave. The linear waves of (2.31) have negative dispersion, i.e. their phase
speed decreases with the wavenumber. The group speed

cg =
∂ω

∂k
=

∂(vk)

∂k
= v + k

∂v

∂k
, (4.14)
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hence, is smaller than the speed of the radiating solitary wave, cg < v. The emitted
radiation is lagging behind the soliton, and there must be no radiation ahead of the
wave, i.e. at ξ → +∞, by virtue of the causality principle. The path of integration in
the complex domain must then consist of a straight line parallel to the real axis and
crossing the imaginary one at ε > 0, so that

k = Re[k] + iε and exp{ikξ} = exp{i Re[k]ξ} exp{−εξ} → 0, ξ → +∞ (4.15)

where Re designates the real part, and a semicircle in the upper plane, if ξ is positive,
and in the lower plane if it is not. The contour must be passed in the clockwise
direction for negative ξ and counterclockwise for positive, the value of the integral
determined by the residues in the singular points of the integrand. The value of J1 is
obtained by taking the limit ε → 0.

The only pole of the integrand in J1 is situated on the real axis at k = |κ |; therefore∫ ∞

−∞

exp{ikξ}
k − |κ | dk =

{
0, ξ > 0

−2πi exp{i|κ |ξ}, ξ < 0.
(4.16)

Finally, the expression for the tails of the delocalized solitons in deep water can be
written as (by virtue of (3.9) |κ | =2/v � 1)

bs(ξ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

(̃
b2

s

)
0

πv3|κ |2ξ 2
+ o

(
1

ξ 2

)
, ξ > 0

2

v3
Re

[
i exp{i|κ |ξ}

(̃
b2

s

)
|κ |

]
−

(̃
b2

s

)
0

πv3|κ |2ξ 2
+ o

(
1

ξ 2

)
, ξ < 0.

(4.17)

We stress that (4.17) describes an asymmetric profile. The solitary wave has an
oscillatory tail only behind it, while ahead the medium remains unperturbed. This
result at first sight contradicts our numerical computations, where all solitary wave
profiles were found to be symmetric with respect to the crest. To explain this
contradiction let us recall that in the course of numerical computations we were
looking for stationary solutions of (4.6b), whereas (4.17) describes a radiating, non-
stationary soliton. ‘Delocalized’ solitons found numerically represent, in fact, just one
period of the periodic cnoidal-like wave in the strongly nonlinear limit, which can be
viewed as a sequence of solitary waves separated by a very large distance. Hence, the
stationary solitary waves obtained in the numerical experiments are indeed emitting
backward, but at the same time they absorb the radiation emitted by the preceding
solitary wave. The energy losses due to Landau damping are then balanced by the
absorption and the wave is stationary.

Equation (4.17) indicates that the amplitude of the oscillations in the tail of the
soliton is proportional to the amplitude of the resonant Fourier harmonic

(̃
b2

s

)
|κ |.

In finite-depth water solitary waves are much more localized, their tails decaying
exponentially fast. This results in a much wider spectrum and more easily detectable
tail oscillations. The span of speeds of the ‘delocalized’ waves is closely connected
with their localization in the Fourier and ξ -space, which explains why the former
contracts as the depth decreases.

Thus, we have found long-lived quasi-stationary radiating solitary waves, which, as
we show below, will feature prominently in evolution scenarios.
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5. Evolution of localized pulses
Solitary waves represent, probably, the most interesting class of solutions of

nonlinear evolution equations. They are long-lived and attractive, i.e. an arbitrary
localized pulse tends to evolve into a set of solitary waves plus, possibly, a wavetrain of
harmonic oscillations. The latter is subject to dispersion; its amplitude decreases with
time. In the solitary wave, on the contrary, the effect of dispersion is counterbalanced
by the nonlinearity, which results in the much longer lifespan. In a sense solitary
waves represent long-time asymptotics for a wide class of solutions of the initial value
problem at large times. Whatever the initial conditions, after a sufficiently long time
harmonic waves become almost unnoticeable in the wave field, while the solitary
ones persist. This argument is corroborated well by numerous field observations
in the ocean. Long internal waves, for example, are quite often observed in the
ocean as solitary-like waves, rather than periodic wave modes, the standard models
being KdV/Benjamin–Ono/Joseph equations (see e.g. Ostrovsky & Stepanyants
1989). To check whether the solitary wave solutions of (2.31) indeed represent the
asymptotics of the evolution of initial localized pulses, and, in particular, to clarify
the role of radiating solitary waves, we carried out extensive numerical simulations.
Equations (2.31) were integrated in time starting with the pulses having the shape
of the solitary wave computed in § 4, with the width increased by a factor 4 and the
amplitude by factors ranging from 0.4 to 2.5. The resulting localized pulses do not
represent a solution to (2.31) and have to evolve in the course of propagation. The
numerical scheme employed is based on the pseudospectral method with respect to
the spatial variable and on the Runge–Kutta scheme with respect to time. Employing
the Fourier transform we rewrite (2.31) in the spectral form

˙̃ak = ik[−(ã2)k + b̃k], (5.1a)

˙̃
bk = ik[ãk + (−δ + Lk)b̃k], (5.1b)

where the dot denotes the derivative with respect to time. Equations (5.1) represent a
system of nonlinear ordinary differential equations, which were solved numerically by
the Runge–Kutta method, the computation of the nonlinear term being performed at
each step using the FFT (fast Fourier transform) algorithm. To remove the aliasing
errors which occur due to this nonlinear operation the upper half of the Fourier
spectrum was zeroed after each step (Canuto filtering, see e.g. Canuto et al. 1988).

The simulations show that the outcome of the evolution of the localized pulse
strongly depends on the pulse’s initial amplitude and width. The pulses having the
initial amplitudes below a certain threshold, which we refer to as ‘subcritical’, evolve
into a set of solitary waves and a small wavy tail, whereas the ‘supercritical’ ones
develop a singularity at the forefront, which suggests wave breaking, although, of
course, the asympotic model is no longer valid near the singularity. An example of
subcritical evolution in deep water is shown in figure 11, the amplitude factor of the
initial pulse being equal to 2.0. There are four solitary waves emerging from the initial
pulse, two moving right and two left. The wave situated at x =90 at t = 50 has field
components of opposite signs, which distinguishes it as the ‘fast’ solitary wave. Two
waves moving left have negative velocities and obviously are the gap solitons. Yet the
highest wave at x = 20 at t = 100 also has positive velocity, but its field components
have the same polarity. It is a clear manifestation of a ‘delocalized’ soliton in the
evolutionary problem.

A similar outcome is typical of water of finite depth as well: again initial pulses
evolve into a sequence of solitons, including ‘delocalized’ ones, provided their initial
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Figure 11. Evolution of a subcritical initial pulse in deep water, δ = 1.

amplitude is below the threshold, and break otherwise. An example of the subcritical
evolution in water of finite depth is shown in figure 12, with the ‘delocalized’ wave
emerging with by far the largest amplitudes and moving to the right. The computations
prove that ‘delocalized’ solitons do emerge in simulations as intermediate asymptotics
of the initial value problem, and, moreover, typically they have the largest amplitude
and, therefore, represent a physically very important class of solutions of (2.31). Of
course, the number and the type of solitary waves emerging from the original pulse
strongly depend on the initial values of the integrals (3.3). The radiating ‘delocalized’
solitons which tend to have larger amplitudes and, hence, correspond to larger values
of the integrals of motion, emerge only if the initial values of the latter are above
a certain threshold. In our calculations none emerged unless the amplitude of the
initial pulse, i.e. a solitary wave stretched by the factor 4, was larger than 1.6 times
the amplitude of the original solitary wave.

A typical example of the ‘supercritical’ evolution is shown in figure 13, the amplitude
factor being 2.3 in this case. Similarly to the subcritical evolution, first a ‘fast’ solitary
wave starts to emerge from the initial pulse, but instead of simply running away
develops a singularity at the crest, the front becoming vertical at t = 12. Of course,
the calculations have to be stopped at this stage as the amplitudes of the higher
Fourier harmonics grow very fast, rendering the pseudospectral scheme employed
inapplicable. The most probable reason for the instability seems to be the following:
the amplitude of the ‘fast’ wave, which is expected to form, exceeds the amplitude of
the ‘peaked’ soliton corresponding to the chosen values of the depth and the phase
mismatch δ. Any attempt to form such a ‘supercritical’ wave would immediately result
in instability. It is worth noting that the singularity develops only in the a-component
of the wave field, while b(ξ ) remains smooth. Hence, the breaking would be observed
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in the upper layer only, the motion at depth remaining regular. The possible outcome
of the instability is difficult to tell, having been confined by the assumptions leading
to (2.31). The solitary waves might still emerge after the breaking process is finished
and a part of the initial pulse’s ‘mass’ is lost to the vortices and turbulence. However,
this question was not addressed and is beyond the scope of the present paper.

6. Discussion
Here we briefly summarise the results and discuss their context and possible

implications. First, the study shows that the internal wave–shear flow resonance is a
generic phenomenon which can occur in water of arbitrary depth and that the presence
of quite a shallow surface current can change qualitatively the nonlinear dynamics of
internal gravity waves even if the pycnocline depth far exceeds the penetration scale of
the current. Although the resonance condition (2.27) is somewhat restrictive, especially
when the balance (2.7) is taken into account, we expect the resonance to occur in
natural basins, provided the stratification is comparatively weak or the current has
considerable shear. Under the resonant conditions the interaction of internal waves
with the current, rather than their own nonlinearity, is the key factor influencing
the waves’ dynamics. Even comparatively weak internal waves, which in the absence
of the current would remain linear, can induce strong nonlinear effects, including
‘peaked solitons’ and breaking events just beneath the sea surface. Therefore, surface
currents not only represent one of the principal factors in the amplification of internal
waves surface signatures, but also could quite significantly affect the internal wave’s
own dynamics and, therefore, must be always recorded during the internal wave field
observations and taken into account in the experimental data interpretations. The
interpretation of the observations is not easy and straightforward. As exemplified by
figure 10(d), the manifestations of radiating solitary waves in the laboratory frame
of reference with the mean current being part of the picture are quite inconspicuous.
In the real ocean the presence of the ambient-noise wave field makes discerning such
solitary waves by chance practically impossible. Because of the large separation of
scales involved, it is extremely difficult to find these motions, even by direct numerical
simulations of full hydrodynamic equations, without precise prior knowledge of what
to look at and what to expect.

In typical in situ observations the most commonly recorded characteristic is the
pycnocline deflection. If a solitary-wave-type pattern on the interface is recorded
and identified as such (in our context the most difficult bit), then it is easy to trace
its origin even in the absence of any other measurements: the ‘resonant’ solitons
are much shorter than the classical KDV/Benjamin–Ono/Joseph solitons of the same
amplitude. If the variations of the surface velocity are also monitored, then it becomes
possible to distinguish between fast and gap/delocalized ‘solitons’: the perturbations
of the surface velocity are in phase with the pycnocline deflection for the former
and in counterphase for the latter. Use of acoustics should enable one to make a
finer distinction between slow and delocalized radiating solitary waves by combining
ADCP measurements with spatial structure analysis of the type presented in § 4.5.

It is appropriate to recall the basic physics of the resonance in deep/finite-depth
water, which is similar to that in shallow seas. Internal waves originating from the
density interface produce a pressure perturbation in the upper layer moving with the
flow. The induced pressure wave causes a velocity perturbation, which is accounted
for in the model as a vorticity wave mode. Of course, the feedback influence, which
makes the dynamics of the internal wave nonlinear, is present as well. This basic
mechanism works similarly both in shallow and deep/finite-depth water and the
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resulting wave patterns are quite similar, apart from the one, but striking, difference
we discuss below.

Although Voronovich et al. (1998a) have shown explicitly that no stationary waves
can exist outside the gaps in the spectrum of linear waves in shallow water, in water
of finite depth we found ‘delocalized solitons’ travelling with speeds belonging to
the range of linear waves. In itself, the fact of their existence is not particularly
surprising: similar stationary solutions are common in many systems where several
wave modes interact (e.g. Boyd 1991). The focus of our study is the role they play
in the evolution. Such solitary waves are expected to radiate linear harmonics and
decay due to the Landau damping mechanism and this, indeed, happens. Yet, the
rate of energy loss being asymptotically small, the radiating solitary waves prove to
be quasi-stationary, i.e. long-lived patterns. Thus, these are effectively not so different
from the classical ones and do represent intermediate asymptotics in the temporal
evolution of the localized pulses. Moreover, for a wide class of initial perturbations,
they emerge as by far the highest solitary waves. Therefore, not only should such
objects be accounted for in all studies of wave evolution, but for some aspects of
the evolution they often represent the dominant feature. The issue, certainly, needs
further study. However, we believe, that the phenomenon is generic and we expect
that in all systems admitting ‘delocalized solitons’ with asymptotically small tails,
they represent intermediate asymptotics in the temporal evolution, but are unaware
of any studies concerned with this issue and, therefore, at present cannot provide any
evidence to support our conjecture.

The role played by the quasi-stationary radiating solitary waves in nonlinear field
evolution is in many respects similar to that played by the quasi-modes in linear
dynamic in shear flows (Shrira & Sazonov 2001). Normally, in a linear setting the
large-time asymptotics of arbitrary initial conditions are represented by a sequence of
wave packets corresponding to discrete eigenvalues of the system, while in nonlinear
systems, admitting soliton solutions, these correspond to the discrete spectrum and
represent similarly dominant large-time asymptotics (for an integrable system this
statement should be understood literally and not as a metaphor). In a linear setting the
quasi-modes represent ‘fictitious’, weakly decaying due to Landau damping, discrete
modes made up of a combination of continuous spectrum modes, which are shown
to be intermediate (and often absolute) asymptotics of generic initial-value problems
(Sazonov & Shrira 2003). However, there is an important distinction: the quasi-
modes eventually tend to decay into a continuous spectrum, while the radiating
solitary waves, as suggested by figure 9, will eventually turn into the usual ‘gap
solitons’, that is into part of the discrete spectrum. It should be noted we have not
simulated such a transformation of radiating solitons, since it represents a technical
challenge and the asymptotic validity of our model breaks down for very small v.
Perhaps this new phenomenon would be easier to examine first within the framework
of a simpler model, say, fifth-order KdV.

In the context of internal waves, we, for the sake of simplicity, made a number
of assumptions and now it is appropriate to discuss, how critical they are. The
two-layer model of stratification was chosen as the simplest model exhibiting the
desired phenomenon. The generalization of the results for an arbitrary continuous
stratification is straightforward, provided the scaling assumptions hold. Although we
ignored spanwise variability, three-dimensional effects are easily taken into account,
provided their scale considerably exceeds the wavelengths. This would result in the
KP-like modification of the second equation in (2.31), as in Voronovich et al. (1998a).
However, the character of the evolution in such a KP-type extension of the model
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has not been studied; we cannot exclude that in a certain range of parameters the
planar solitary waves found might be transversally unstable. Horizontal homogeneity
was assumed, although in reality large-scale variations of the thermocline strength
and depth, bottom topography and current speed are quite common. If this is the
case, the phase mismatch δ in (2.31) will depend on the streamwise coordinate and the
evolution is not expected to differ qualitatively from the two basic scenarios described
in Shrira et al. (2000). Either the waves would tend to disentangle from the current,
decrease in amplitude and evolve into the true low-amplitude BO/Joseph solitons,
or their steepness would grow resulting in the emergence of the ‘peaked solitons’
and breaking. A new interesting possibility is transformation of ‘gap solitons’ into
the radiating ones and vice versa caused by inhomogeneity, as well as the evolution
of steepening radiating solitary waves towards a parameter domain characterized by
increasing radiation. However, the effects due to horizontal non-uniformities and their
influence on the resonant wave dynamics are beyond the scope of the present paper
and require a separate study.

The authors are grateful to D. Pelinovsky for helpful discussions. V. V. V. gratefully
acknowledges partial financial support from the UCC Boole Centre for Research in
Informatics. The work was also supported by INTAS 01-234.

Appendix A. Matching condition at the density jump interface
We begin with the standard system of equations for fluid motion in the form

ρDu + px = 0

(
D =

∂

∂t
+ u

∂

∂x
+ w

∂

∂z

)
, (A 1a)

ρDw + gρ + pz = 0, (A 1b)

Dρ = 0, (A 1c)

ux + wz = 0, (A 1d)

where u = {u, w}, p are the total velocity and pressure, g is acceleration due to gravity
and D is the material derivative. The equilibrium density of the fluid ρe is constant
in the layers and has a finite jump at the moving interface z = −H + ζ (t, x).

First note that at the interface the tangential component of the pressure gradient
must be continuous, i.e.

[px + ζxpz] = 0, (A 2)

where as before

[f ] = f + − f −, f ± = f (−H + ζ±, 0) (A 3)

denotes the jump of the variable f at the interface and f ± are the values of the
function f just above and below it. By definition the interface displacement ζ (t, x) is
continuous at the interface. Then, multiplying (A 1b) by ζx , summing the result with
(A 1a) and utilizing (A 2), we obtain

[ρΨ ] + g[ρ]ζx = 0, where Ψ = Du + ζxDw. (A 4)

Employing the definition (A 3) simple manipulations yield

[ρΨ ] = ρ+Ψ + − ρ−Ψ − = (ρ− + [ρ])(Ψ − + [Ψ ]) − ρ−Ψ −

= ρ−[Ψ ] + Ψ −[ρ] + [Ψ ][ρ]

= ρ−[Ψ ] + Ψ +[ρ]. (A 5)
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Therefore, (A 4) can be written as

[Ψ ] + g
[ρ]

ρ−
ζx = −Ψ + [ρ]

ρ− (A 6a)

or, by virtue of the definition of Ψ in (A 4),

[Du] + [Dw]ζx + g
[ρ]

ρ−
ζx = (Du+ + ζxDw+)

[ρ]

ρ−
. (A 6b)

Under the Boussinesq approximation the right-hand side vanishes. Recall that

[ρ] = −�ρ, ρ− = ρ2,

then (A 6b) transforms into the required dynamic boundary condition condition (2.5b)

[Du] + [Dw]ζx − g′ζx = 0 at z = −H + ζ.

Here g′ = g�ρ
/
ρ2 is reduced gravity.

Appendix B. Newton’s iterations
To find localized solutions of (4.2) a numerical scheme based on the standard

Newton method was employed. Excluding bs from (4.2b) first we arrive at

Λ̃[as] = Ñ
[
a2

s

]
, (B 1a)

where Λ̃ and Ñ are linear operators:

Λ̃[as] = (v(v − δ + L̃) − 1)as, Ñ
[
a2

s

]
= (v − δ + L̃)a2

s . (B 1b)

Performing the Fourier transform of (B 1a) results in

ãk =
Nk

Λk

(̃
a2

s

)
k
, (B 2a)

where

Λk = v(v − δ) − 1 + vQ(k), Nk = v − δ + Q(k) (B 2b)

are the Fourier images of the kernels of the original operators (B 1b).
At each step the next approximate value of the function aj+1

s was assumed to be
the sum of the previous approximation aj

s and an unknown discrepancy ηj :

aj+1
s = aj

s + ηj . (B 3)

The discrepancy was assumed to be sufficiently small compared to the approximation
of the solution that (B 1a) might be linearized with respect to η. Thus, at the j th step
of the iteration process we consider a linear equation

Λ̃
[
aj

s

]
+ Λ̃[ηj ] = Ñ

[(
a2

s

)j
+ 2ajηj

]
, (B 4)

with the terms quadratic in ηj neglected. Performing a Fourier transform of (B 4)
results in

(Λk − 2NkÃj
)η̃j

k = Nk

(̃
a2

s

)j

k
− Λkã

j
k . (B 5)

Here Ãj is the operator of convolution in k-space, which appears due to the term
with the product of two functions occurring in x-space:

Ãj[
η̃

j
k

]
= ã

j
k ∗ η̃

j
k . (B 6)
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Solving (B 5), i.e. finding ηj , yields the next approximation to the solution aj+1 via
(B 3).

To perform numerical computations one has to discretize the equations, i.e.
substitute continuous functions as , η with the vectors of finite length composed
of the values of the former at the points of a chosen grid, in both ξ - and k-spaces. In
the discrete form the action of linear operators on a function generally corresponds
to the multiplication of the vector by the matrix. The matrices corresponding to the
operators Λ̃ and Ñ have elements differing from zero only on the main diagonal,
these being the elements of the vector obtained from the Fourier images of the
corresponding operator kernels Lk , Nk . We use bold type to denote vectors and
matrices. It is much less obvious how matrix Aj corresponding to the operator

Ãj
looks like. To find Aj note that the element-by-element multiplication of two

vectors which results in the vector with the components equal to the products of the
corresponding elements of the multipliers (the subscript denotes the nth component
of the vector)

(a � η)n = anηn,

can be written as the product of a diagonal matrix diag(aj ) by a column-vector ηj

aj � ηj = diag(aj )ηj

where the diagonal matrix diag(aj ) is formed from the appropriately placed elements
of the vector aj . Let F and F−1 be the matrices of the direct and inverse discrete
Fourier transform, then the action of operator Ãj

can be accounted for as the
successive product of the matrices by the discrepancy vector

Ãj[
η̃

j
k

]
−→ F[diag(aj )ηj ], (B 7a)

hence

Aj η̃
j
k −→ F diag(aj )F−1η̃

j
k ⇒ Aj = F diag(aj )F−1. (B 7b)

On finding matrix Aj , representing the operator of the convolution, we rewrite (B 5)
in the form of a system of n inhomogeneous linear equations for the unknown
components of the discrepancy vector η̃

j
k:

Mj η̃
j
k = bj, (B 8a)

where matrix Mj is given by the expression

Mj = diag(Lk) − 2 diag(Nk)F diag(aj )F−1, (B 8b)

while the column vector on the right-hand side is

bj = NkF aj � aj − Lkaj
k . (B 8c)

Here the symbol � is used to denote the operation described above of the element-by-
element multiplication of two vectors. We compute the convolution of two functions
by multiplying their Fourier images and performing the inverse Fourier transform.
The linear system (B 8) can then be solved by any standard method of numerical
analysis.
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